Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(n__s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(n__s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic path order with status [19].
Quasi-Precedence:
[2nd1, activate1] > from1 > cons2 > [ncons2, nfrom1, ns1]
[2nd1, activate1] > s1 > [ncons2, nfrom1, ns1]

Status:
from1: [1]
nfrom1: [1]
ns1: [1]
s1: [1]
cons2: [1,2]
activate1: [1]
ncons2: [2,1]
2nd1: [1]